Carleton College, winter 2013 Math 232, Solutions to review problems and practice midterm 1 Prof. Jones

Solutions to practice exam:

Solutions to review problems:

1. Find all solutions of the following system of linear equations.

 $x_1 +2x_2 +x_4 = 0$ $-3x_1$ +x₃ = 1 $-x_1$ +4 x_2 + x_3 +2 x_4 = 1

To find the solutions, we need to put this system into reduced row-echelon form. Adding 3 times the first equation to the second equation and 1 times the first equation to the third equation gives

$$
x_1 +2x_2 +x_4 = 0
$$

+6x_2 +x_3 +3x_4 = 1
+6x_2 +x_3 +3x_4 = 1

Adding -1 times the second equation to the third equation and -1/3 times the second equation to the first equation and then multiplying the second equation by $1/6$ gives

$$
\begin{array}{rcl}\nx_1 & -(1/3)x_3 & = & -1/3 \\
+x_2 & +(1/6)x_3 & +(1/2)x_4 & = & 1/6 \\
0 & = & 0\n\end{array}
$$

This is now in rref. We see that the leading variables are x_1 and x_2 , while the free variables are x_3 and x_4 . Setting $x_3 = t_1$ and $x_4 = t_2$, we get that the set of solutions is

$$
\left\{ \left(\frac{1}{3}t_1 - \frac{1}{3}, -\frac{1}{6}t_1 - \frac{1}{2}t_2 + \frac{1}{6}, t_1, t_2 \right) \in \mathbb{R}^4 \mid t_1, t_2 \in \mathbb{R} \right\}
$$

2. Let A be an $n \times n$ matrix of rank n, and suppose that **b** is a vector in \mathbb{R}^n . Must there be $\mathbf{v} \in \mathbb{R}^n$ with $A\mathbf{v} = \mathbf{b}$? Prove or give a counter-example.

Yes. An $n \times n$ matrix of rank n is invertible, and thus $\mathbf{v} = A^{-1} \mathbf{b}$ is the solution we seek.

3. For each of the following subsets W of a vector space V, determine if W is a subspace of V. In each case either prove that W is a subspace or give a concrete reason why it is not a subspace.

(a)
$$
V = \mathbb{R}^4
$$
, and $W = \{(x_1, x_2, x_3, x_4) | x_1 = x_3 - x_2$, and $x_4 = 0\}$

Observe first that $W = \{(x_1, x_2, x_3, x_4) | x_1 + x_2 - x_3 = 0, x_4 = 0\}$. So W is the set of vectors $\mathbf{x} \in \mathbb{R}^4$ such that $A\mathbf{x} = \mathbf{0}$, with $A =$ $\begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. So W is the kernel of A, and thus is a subspace by a theorem from class.

(b)
$$
V = \mathbb{R}^4
$$
, and $W = \{(x_1, x_2, x_3, x_4) | x_1 = x_3 - x_2$, and $x_4 = x_1x_3\}$

It seems unlikely to be a subspace since the second condition $x_4 = x_1x_3$ involves multiplication of variables and so is not linear. Indeed, we can show W is not closed under addition: $(1, 2, 3, 3) \in W$ and $(-1, 2, 1, -1) \in W$ but their sum $(0, 4, 4, 2)$ is not in W since it fails the condition $x_4 = x_1x_3$. You could also proceed by showing that W is not closed under scalar multiplication: $(1, 2, 3, 3) \in W$, but $2(1, 2, 3, 3) = (2, 4, 6, 6)$ is not in W.

4. (a) Let
$$
A = \begin{bmatrix} 1 & 1 \ -1 & -1 \end{bmatrix}
$$
. Show that $A^2 = 0$ and that $A + I_2$ is invertible.

This is a direct computation, first of A^2 , and then of the determinant of $A + I_2$, which is 1. Since $A + I_2$ has non-zero determinant, it is invertible.

(b) Suppose that A is an $n \times n$ matrix with $A^2 = 0$. Must $A + I_n$ always be invertible? Either explain why or give a counter-example.

Yes. We have $(A + I_n)(A - I_n) = A^2 + I_nA - AI_n + I_nI_n = 0 + A - A + I_n = I_n$, where we have used several properties of I_n . Thus there is a matrix B such that $(A + I_n)B = I_n$ (we can take $B = A - I_n$). So by a theorem from class, $A + I_n$ is invertible.

- 5. Find all the vectors in the kernel of each of the following linear transformations, and justify your answers.
	- (a) The shear $T(\mathbf{x}) = \begin{bmatrix} 1 & -5 \\ 0 & 1 \end{bmatrix} \mathbf{x}$.

The matrix has non-zero determinant, and so is invertible. Thus the only **x** with $T(\mathbf{x}) = \mathbf{0}$ is $\mathbf{x} = A^{-1} \mathbf{0} = \mathbf{0}$. So the kernel of T is $\{\mathbf{0}\}\$.

(b) Reflection about a plane in \mathbb{R}^3 .

This transformation is again invertible (it is its own inverse, since $T(T(\mathbf{x})) = \mathbf{x}$ for all \mathbf{x} , so it has kernel $\{0\}$.

(c) $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by projection onto the line $y = x$.

The kernel consists of the vectors that project to $\mathbf{0}$, which are precisely those that lie along the line perpendicular to $y = x$. That line is $y = -x$, also known as the span of the vector $\begin{bmatrix} 1 \end{bmatrix}$ −1 1 .

(d) $T(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times m$ matrix of rank m.

We seek all solutions to $A\mathbf{x} = \mathbf{0}$. So we put the augmented matrix $[A|\mathbf{0}]$ into rref, and we find there is a leading 1 in each column (since the rank of the matrix equals the number of columns). Thus there are no free variables, and it follows that $A\mathbf{x} = \mathbf{0}$ has a unique solution. Hence the kernel of T consists only of 0.

6. Given subspaces W_1 and W_2 of \mathbb{R}^n , set

$$
W_1 + W_2 = \{ \mathbf{x} \in V : \mathbf{x} = \mathbf{w_1} + \mathbf{w_2} \text{ for some } \mathbf{w_1} \in W_1 \text{ and } \mathbf{w_2} \in W_2 \}.
$$

Prove that $W_1 + W_2$ is a subspace of V.

Let **x** and **y** be in $W_1 + W_2$, meaning that $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ for some $\mathbf{x}_1 \in W_1$, $\mathbf{x}_2 \in W_2$ and $y = y_1 + y_2$ for some $y_1 \in W_1$, $y_2 \in W_2$. Then

$$
x + y = x_1 + x_2 + y_1 + y_2 = (x_1 + y_1) + (x_2 + y_2).
$$

Since W_1 is a subspace, $x_1 + y_1 \in W_1$, and since W_2 is a subspace, $x_2 + y_2 \in W_2$. We've thus written $\mathbf{x} + \mathbf{y}$ as an element of W_1 plus an element of W_2 , showing that $\mathbf{x} + \mathbf{y} \in W_1 + W_2$.

Now let $\mathbf{x} \in W$ and c be a scalar, so that $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$ for some $\mathbf{x}_1 \in W_1$, $\mathbf{x}_2 \in W_2$. Then $c\mathbf{x} = c(\mathbf{x_1} + \mathbf{x_2}) = c\mathbf{x_1} + c\mathbf{x_2}$, and this last expression is the sum of an element of W_1 and an element of W_2 , and so is in $W_1 + W_2$.

- 7. Let $V = \mathbb{R}^2$ and $S = \begin{cases} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ 2 1 , $\begin{bmatrix} 2 \end{bmatrix}$ $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$.
	- (a) Show that $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 2 1 is in $Span(S)$. [Hint: this is the same as solving a certain system of equations]

We need to find weights x_1 and x_2 such that x_1 $\lceil 2$ 2 1 $+ x_2$ $\begin{bmatrix} 2 \end{bmatrix}$ -2 1 = $\lceil 1 \rceil$ 2 1 . Equating coordinates gives

$$
\begin{array}{rcl}\n2x_1 & +2x_2 & = & 1 \\
2x_1 & -2x_2 & = & 2\n\end{array}
$$

Adding −1 times the first equation to the second gives

$$
\begin{array}{rcl}\n2x_1 & +2x_2 & = & 1 \\
& -4x_2 & = & 1\n\end{array}
$$

We now divide the first equation by 2 and multiply the second equation by $-1/4$. Finally, we add −1 times the new second equation to the first equation, and this gives the echelon form

$$
x_1 = 3/4
$$

\n
$$
x_2 = -1/4
$$

\nWe have thus shown that $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{3}{4} \begin{bmatrix} 2 \\ 2 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 2 \\ -2 \end{bmatrix}$, proving that $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is in Span(S).

(b) Show that every vector (b_1, b_2) in \mathbb{R}^2 is in Span(S).

The calculation is very similar to that of part (a). Let $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ b_2 $\Big] \in \mathbb{R}^2$, and look for weights x_1, x_2 satisfying x_1 $\lceil 2$ 2 1 $+ x_2$ $\begin{bmatrix} 2 \end{bmatrix}$ -2 1 = $\begin{bmatrix} b_1 \end{bmatrix}$ b_2 1 . Equating coordinates gives

$$
\begin{array}{rcl}\n2x_1 & +2x_2 & = & b_1 \\
2x_1 & -2x_2 & = & b_2\n\end{array}
$$

Adding −1 times the first equation to the second gives

$$
\begin{array}{rcl}\n2x_1 & +2x_2 & = & b_1 \\
-4x_2 & = & b_2 - b_1\n\end{array}
$$

We now divide the first equation by 2 and multiply the second equation by $-1/4$. Finally, we add −1 times the new second equation to the first equation, and this gives the echelon form

$$
\begin{array}{rcl}\nx_1 & = & (1/2)b_1 + 1/4(b_2 - b_1) \\
x_2 & = & -1/4(b_2 - b_1)\n\end{array}
$$

Thus the system of equations has a solution, proving that $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ b_2 1 is in $Span(S)$. Thus $Span(S)$ $= \mathbb{R}^2$.

8. Let S be a non-empty subset of \mathbb{R}^n . Assume that each vector in Span(S) can be written in one and only one way as a linear combination of vectors in S . Show that S is linearly independent.

Suppse that we have $a_1\mathbf{x}_1 + \cdots + a_n\mathbf{x}_n = \mathbf{0}$ with $\mathbf{x}_i \in S$. We know that $\mathbf{0}$ can also be written as the linear combination

$$
0\mathbf{x_1} + \cdots + 0\mathbf{x_n}.
$$

Since $0 \in \text{Span}(S)$, our hypothesis gives us that there is only one way to write 0 as a linear combination of vectors in S. Therefore we must have $a_1 = 0, \ldots, a_n = 0$. Hence S is linearly independent.